Varsity College
 Year 10 Mathematical Methods - Semester 1, 2024

Week	Date	Topics	Assessment
1	22-26 January O-Week Australia Day PH Fri	O Week	
2	29 Jan-2 Feb	Algebra - Recall, define and interpret algebraic terminology - Identify, collect and simplify like terms - Substitute and evaluate expressions - Expand and simplify problems with brackets	
3	5-9 February Swimming Carnival - Thurs Thurs	- Factorise algebraic expressions - Identify inverse operations and rearrange equations.	
4	12-16 February	- Determine the surface area of three-dimensional solids including pyramids, cones and spheres as an application of rearranging equations and substitution.	
5	19-23 February	Index Laws - Use positive index laws to simplify algebraic expressions $a^{m} \times a^{n}=a^{m+n}, a^{m} \div a^{n}=a^{m-n},\left(a^{m}\right)^{n}=a^{m n}$ and $a^{0}=1$ - Use negative index laws to simplify $a^{-m}=\frac{1}{a^{m}}$ - Use fractional index laws to simplify $a^{\frac{m}{n}}=\sqrt[n]{a^{m}}$	
6	26 Feb-1 Mar GC24-Wednesday	Surds - Add and subtract surd terms by identifying like terms - Simply a surd by finding a square factor	
7	4-8 March	- Simplify expressions involving surds using surd laws - Rationalise the denominator of a surd.	
8	11-15 March	Revision	$\begin{gathered} \text { EXAM } \\ \text { Lesson } 3 \end{gathered}$
9	18-22 March GC24 - Thursday	Trigonometry - Use Pythagoras' theorem to determine the various lengths of a right-angled triangle. - Recall trigonometric ratios and use to solve lengths. - Use trigonometric ratios to solve for angles.	
10	25-29 March Good Friday PH	- Use angles of elevation and depression to solve problems. - Solve problems involving bearings.	
School holidays: Friday March 29 - Sunday April 14			

Term 2, 2024

Week	Date	Topics	Assessment
1	$\begin{aligned} & \text { 15-19 April } \\ & \text { Cross Country - Wed } \end{aligned}$	Linear Algebra - Sketch linear equations from: two points; equation; context.	
2	$\begin{array}{\|l\|} \hline \text { 22-26 April } \\ \text { GC24- - Tuesday } \\ \text { Anzac Day PH-Thurs } \end{array}$	- Determine the equation of a line that is parallel or perpendicular to each another line. - Construct a linear model from a worded problem and use model to solve a problem	
3	29 Apr-3 May	Inequalities - Determine an inequality from a number line. - Solve inequalities by remembering to reverse the inequality sign when multiplying/dividing by a negative.	
4	$\begin{aligned} & \text { 6-10 May } \\ & \text { Labour Day PH - Mon } \end{aligned}$	Scatterplots - Describe the correlation found in scatterplots in terms of strength, direction and form. - Develop a linear model to fit data on a scatterplot. - Use a model from a scatterplot to make predictions, and evaluate the reasonableness of these predictions.	
5	13-17 May	Simultaneous Equations - Determine a simultaneous solution using a graph. - Determine a simultaneous solution using substitution method. - Determine a simultaneous solution using elimination method, with both the same and different coefficients.	
6	20-24 May	- Interpret contextual problems, apply knowledge to solve simultaneous equations and evaluate the reasonableness of the solution.	
7	27-31 May	Probability - Recall and apply probability skills from years 7-9: theoretical probability, experimental probability, complementary events, twoway tables, Venn diagrams and tree diagrams. - Define unions and intersections between sets. - Use set notation and understand how this links to a venn diagram.	
8	3-7 June	- Use the addition law for non-mutually exclusive events - Define independent and conditional events, and interpret language in a problem that implies these categories. - Apply the independent events law for intersections to calculate probability of two independent events occurring.	
9	$\begin{aligned} & \text { 10-14 June } \\ & \text { GC24 - Wednesday } \end{aligned}$	- Apply the formula for conditional probability to calculate probabilities of and an event A given that event B has occurred.	
10	$\begin{array}{\|l} \hline \text { 17-21 June } \\ \text { Athletics Carnival - } \\ \text { Thurs } \\ \hline \end{array}$	Exam Shutdown	$\begin{gathered} \text { SEMESTER } \\ \text { EXAM } \\ \hline \end{gathered}$
School holidays: Saturday June 22 - Sunday July 7			

